The Renormalization Group Theory Com- Bined to the Ms-gec Method to Study Active Fractal Structures with Incorporated Pin Diodes
نویسندگان
چکیده
The renormalization group theory (RGT) is used in this paper to develop an extension of the multi-scale approach (MS-GEC), previously developed by the authors, in order to enable the study of fractal structures at infinite iterations. In this work, we focused on active fractal structures with incorporated PIN diodes but the developed concept can be applied to a wide variety of fractals. The MS-GEC method deals with fractal-shaped objects as a set of scale levels. The processing is done gradually, one scale at each step, from the lowest scale till the highest one. To compute the input impedance of fractal-shaped structures using the MS-GEC method, we demonstrated that the input impedance of any scale level is generated from the input impedance of the previous scale level. When the iteration of fractal tends toward infinity, the structure contains an unknown number of levels. Since the atomic level cannot be defined, a critical point is reached limiting then the scope of the MS-GEC and of the existing classical methods. Based on RGT concepts, if the relation between the input impedances of two consecutive levels can be rewritten independently of the critical parameter (which is in our case the scale level), a transformation called “renormalization group” is generated. Consequently, the input impedance of the infinite active fractal structure approaches the fixed point of the defined transformation independently of the system details at the atomic level. The MS-GEC method combined to the RGT is a very powerful technique since it profits from the advantages (rapidity and reduced memory requirements) of the MS-GEC method and from the ability of the RGT to solve problems at their critical point. Received 31 January 2011, Accepted 11 March 2011, Scheduled 15 March 2011 Corresponding author: Sonia Mili ([email protected]). 44 Mili, Larbi Aguili, and Aguili
منابع مشابه
Time-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملFractal Population Ecology Theory
Abstract Purpose - The aim of this paper is to describe the population ecology theory through fractal thinking, an emergent human operating system that is creative, adaptive, healthy, and evolutionary; furthermore, a parallel is drawn between the population ecology model and the fractal structure. Top-down hierarchies are typically characterized by command and control systems of the authority t...
متن کاملImproving security of double random phase encoding with chaos theory using fractal images
This study presents a new method based on the combination of cryptography and information hiding methods. Firstly, the image is encoded by the Double Random Phase Encoding (DRPE) technique. The real and imaginary parts of the encoded image are subsequently embedded into an enlarged normalized host image. DRPE demands two random phase mask keys to decode the decrypted image at the destination. T...
متن کاملCritical Behavior of the Ferromagnetic Ising Model on a Sierpiński Carpet: Monte Carlo Renormalization Group Study
We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpiński fractal with Hausdorff dimension df ≃ 1.8928. This method is shown to be relevant to the calculation of the critical temperature Tc and the magnetic eigen-exponent yh on such structures. On the other hand, scaling corrections hinder the calculation of the temperature...
متن کاملThe Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کامل